Exercise 26

Use a linear approximation (or differentials) to estimate the given number.

$$
\sqrt{100.5}
$$

Solution

Compute the derivative of $y=\sqrt{x}$.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} \sqrt{x} \\
& =\frac{d}{d x}\left(x^{1 / 2}\right) \\
& =\frac{1}{2} x^{-1 / 2}
\end{aligned}
$$

Consequently, the differential of $y=\sqrt{x}$ is

$$
d y=\frac{1}{2} x^{-1 / 2} d x
$$

In order to estimate $\sqrt{100.5}$, set $x=100$ and $d x=0.5$.

$$
d y=\frac{1}{2}(100)^{-1 / 2}(0.5)=\frac{1}{40}=0.025
$$

Note that $d y$ here is the vertical distance from the function's actual value at $x=100$ to the linear approximation's value at $x=100.5$.

$$
\sqrt[3]{100.5} \approx \sqrt{100}+\frac{1}{40}=10.025
$$

